首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1293篇
  免费   151篇
  国内免费   123篇
  2024年   2篇
  2023年   19篇
  2022年   25篇
  2021年   24篇
  2020年   50篇
  2019年   61篇
  2018年   49篇
  2017年   41篇
  2016年   51篇
  2015年   49篇
  2014年   62篇
  2013年   82篇
  2012年   50篇
  2011年   63篇
  2010年   34篇
  2009年   75篇
  2008年   57篇
  2007年   63篇
  2006年   65篇
  2005年   67篇
  2004年   57篇
  2003年   48篇
  2002年   56篇
  2001年   25篇
  2000年   42篇
  1999年   37篇
  1998年   33篇
  1997年   15篇
  1996年   27篇
  1995年   27篇
  1994年   18篇
  1993年   25篇
  1992年   21篇
  1991年   13篇
  1990年   13篇
  1989年   16篇
  1988年   12篇
  1987年   8篇
  1986年   9篇
  1985年   12篇
  1984年   17篇
  1983年   13篇
  1982年   11篇
  1981年   5篇
  1980年   6篇
  1979年   5篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1958年   1篇
排序方式: 共有1567条查询结果,搜索用时 31 毫秒
1.
Size-related changes in hydraulic architecture, carbon allocation and gas exchange of Sclerolobium paniculatum (Leguminosae), a dominant tree species in Neotropical savannas of central Brazil (Cerrado), were investigated to assess their potential role in the dieback of tall individuals. Trees greater than ∼6-m-tall exhibited more branch damage, larger numbers of dead individuals, higher wood density, greater leaf mass per area, lower leaf area to sapwood area ratio (LA/SA), lower stomatal conductance and lower net CO2 assimilation than small trees. Stem-specific hydraulic conductivity decreased, while leaf-specific hydraulic conductivity remained nearly constant, with increasing tree size because of lower LA/SA in larger trees. Leaves were substantially more vulnerable to embolism than stems. Large trees had lower maximum leaf hydraulic conductance ( K leaf) than small trees and all tree sizes exhibited lower K leaf at midday than at dawn. These size-related adjustments in hydraulic architecture and carbon allocation apparently incurred a large physiological cost: large trees received a lower return in carbon gain from their investment in stem and leaf biomass compared with small trees. Additionally, large trees may experience more severe water deficits in dry years due to lower capacity for buffering the effects of hydraulic path-length and soil water deficits.  相似文献   
2.
3.
4.
Two 2 m3 plots of soil were prepared to different water contents and each isolated from surrounding soil by impermeable plastic material. Nine sorghum varieties were germinated in the plots and allowed to grow without further watering. Time-to-wilt after emergence was measured, and several parameters relating to water flow of the seedling and nodal roots were determined. There was a good positive correlation between both seminal root and nodal root relative conductvity and time-to-wilt. In a second experiment, plants were germinated and grown in pots, and after two weeks of growth without further watering were inspected for survival in the unwilted state. The per cent survival was calculated. There was a negative correlation of seminal root relative conductivity with per cent survival, and a high negative correlation of the number of seminal roots with per cent survival. It is concluded that high relative conductivity indicates drought resistance if the plants are growing with less restricted roots as in open soil, while if the plants are grown in pots the reverse is the case. Experiments linking root conductivity with survival conducted in pots are poor predictors of performance in less restricted rooting conditions.  相似文献   
5.
The stationary radial volume flows across maize (Zea mays L.) root segments without steles (sleeves) were measured under isobaric conditions. The driving force of the volume flow is an osmotic difference between the internal and external compartment of the root preparations. It is generated by differences in the concentrations of sucrose, raffinose or polyethylene glycol. The flows are linear functions of the corresponding osmotic differences ( ) up to osmotic values which cause plasmolysis. The straight lines obtained pass through the origin. No asymmetry of the osmotic barrier could be detected within the range of driving forces applied ( =±0.5 MPa), corresponding to volume-flow densities of jv, s=±7·10–8 m·s–1. Using the literature values for the reflection coefficients of sucrose and polyethylene glycol in intact roots (E. Steudle et al. (1987) Plant Physiol.84, 1220–1234), values for the sleeve hydraulic conductivity of about 1·10–7 m·s–1 MPa–1 were calculated. They are of the same order of magnitude as those reported in the literature for the hydraulic conductivity of intact root segments when hydrostatic pressure is applied.Abbreviations and symbols a s outer surface of sleeve segment - c concentration of osmotically active solute - j v, s radial volume flow density across sleeve segment - Lps hydraulic conductivity of sleeves - Lpr hydraulic conductivity of intact roots - N thickness of Nernst diffusion layer - reflection coefficient of root for solute - osmotic value of bulk phase - osmotic coefficient  相似文献   
6.
Hydrogen peroxide permeation across large multilamellar vesicles of defined and complex lipid composition was shown to obey precise kinetic relationships for the activity of the occluded catalase. Careful assay conditions precluded simultaneous peroxidative damage to the lipids. The kinetic data was consistent with a barrier role for the bilayer for hydrogen peroxide permeation. More interestingly, hydrogen peroxide permeation across liposomes of complex lipid mixtures exhibited osmotic inhibition of permeation of hydrogen peroxide. On the other hand, purified egg lecithin vesicles did not exhibit any effect of external osmolality on hydrogen peroxide permeation in an experimentally defined non-lytic zone of external osmolarity. These results argue in favour of a heterogeneous, heteroporous structure of bilayers with complex lipid composition.  相似文献   
7.
Abscisic acid and water transport in sunflowers   总被引:5,自引:0,他引:5  
The role of abscisic acid (ABA) in the transport of water and ions from the root to the shoot of sunflower plants (Helianthus annuus) was investigated by application of ABA either to the root medium or to the apical bud. The exudation at the hypocotyl stump of decapitated seedlings was measured with and without hydrostatic pressure (0–0.3 MPa) applied to the root. All ABA concentrations tested (10-10–10-4 mol·l-1) promoted exudation. Maximal amounts of exudate (200% of control) were obtained with ABA at 10-6·mol·l-1 and an externally applied pressure of 0.1 MPa. The effect was rapid and long-lasting, and involved promotion of ion release to the xylem (during the first hours) as well as an increase in hydraulic conductivity. Abscisic acid applied to the apical bud had effects similar to those of the rootapplied hormone. Increased rates of exudation were also obtained after osmotic stress was applied to the root; this treatment increased the endogenous level of ABA in the root as well as in the shoot. Water potentials of the hypocotyls of intact plants increased when the roots were treated with ABA at 5°C, whereas stomatal resistances were lowered. The results are consistent with the view that ABA controls the water status of the plant not only by regulating stomatal transpiration, but also by regulating the hydraulic conductivity of the root.Abbreviations and symbols ABA abscisic acid - Tv volume flow - Lp hydraulic conductivity - PEG polyethyleneglycol - water potential - osmotic potential - osmotic value - P hydrostatic pressure  相似文献   
8.
Summary The relative hydraulic conductivities of major and minor longitudinal veins, and the apoplastic permeability of the bundle sheaths surrounding all longitudinal and transverse veins were investigated in representatives of the C3, C4/NAD-ME, C4/NAD-ME/PCK intermediate, C4/PCK and C4/NADP-ME photosynthetic types. Using the Hagen-Poiseuille equation and measurements of tracheary element diameters, the number of elements in each vein type and the numbers of each vein type, we calculated that 87–99% of the water flow in a longitudinal direction would be expected to occur in the major veins. The permeability of the mestome sheaths and parenchymatous bundle sheaths surrounding the veins was tested using the negatively-charged, fluorescent dye, trisodium 3-hydroxy-5,8,10-pyrenetrisulfonate (PTS). This dye proved nontoxic to plant tissue at a concentration of 0.5%, according to a deplasmolysis test with onion epidermal strips. The PTS concentration achieved in the tested grass leaves was about 0.035%, well below the toxic limit. When a solution of PTS was fed to the leaves by means of a basal cut, the dye moved into the veins of all orders. From there, it moved outward into the surrounding tissues, indicating that the sheaths surrounding the veins of all orders in all species tested were permeable. Therefore, contrary to previous predictions based on structural observations and some tracer studies, bundle sheaths with suberized cell walls do not function as endodermal layers.  相似文献   
9.
Measurements have been made of light-induced conductivity changes and the associated kinetics of the relaxation processes in aqueous suspensions and sonicated liposomes containing bacteriorhodopsin (bR). Aqueous suspensions exhibit a single relaxation time of 1 to 2 ms. The addition of D2O to the aqueous suspension slows down the relaxation time, fourfold. Similar behaviour is seen in sonicated liposomes with a relaxation time of 2 to 3 ms. Activation energies of approximately 14 and 6 kJM-1 are obtained for the effect in sonicated liposomes and aqueous suspension containing bR, respectively. These relaxation processes with lifetime of 1 to 2 ms suggest conformational changes in the protein moiety of bR which most probably may be associated with protonation-deprotonation processes or less likely the release and binding of small ions.  相似文献   
10.
E. Steudle  J. S. Boyer 《Planta》1985,164(2):189-200
Hydraulic resistances to water flow have been determined in the cortex of hypocotyls of growing seedlings of soybean (Glycine max L. Merr. cv. Wayne). Data at the cell level (hydraulic conductivity, Lp; half-time of water exchange, T 1/2; elastic modulus, ; diffusivity for the cell-to-cell pathway, D c) were obtained by the pressure probe, diffusivities for the tissue (D t) by sorption experiments and the hydraulic conductivity of the entire cortex (Lpr) by a new pressure-perfusion technique. For cortical cells in the elongating and mature regions of the hypocotyls T 1/2=0.4–15.1 s, Lp=0.2·10-5–10.0·10-5 cm s-1 bar-1 and D c=0.1·10-6–5.5·10-6 cm2 s-1. Sorption kinetics yielded a tissue diffusivity D t=0.2·10-6–0.8·10-6 cm2 s-1. The sorption kinetics include both cell-wall and cell-to-cell pathways for water transport. By comparing D c and D t, it was concluded that during swelling or shrinking of the tissue and during growth a substantial amount of water moves from cell to cell. The pressure-perfusion technique imposed hydrostatic gradients across the cortex either by manipulating the hydrostatic pressure in the xylem of hypocotyl segments or by forcing water from outside into the xylem. In segments with intact cuticle, the hydraulic conductance of the radial path (Lpr) was a function of the rate of water flow and also of flow direction. In segments without cuticle, Lpr was large (Lpr=2·10-5–20·10-5 cm s-1 bar-1) and exceeded the corticla cell Lp. The results of the pressure-perfusion experiments are not compatible with a cell-to-cell transport and can only the explained by a preferred apoplasmic water movement. A tentative explanation for the differences found in the different types of experiments is that during hydrostatic perfusion the apoplasmic path dominates because of the high hydraulic conductivity of the cell wall or a preferred water movement by film flow in the intercellular space system. For shrinking and swelling experiments and during growth, the films are small and the cell-to-cell path dominates. This could lead to larger gradients in water potential in the tissue than expected from Lpr. It is suggested that the reason for the preference of the cell-to-cell path during swelling and growth is that the solute contribution to the driving force in the apoplast is small, and tensions normally present in the wall prevent sufficiently thick water films from forming. The solute contribution is not very effective because the reflection coefficient of the cell-wall material should be very small for small solutes. The results demonstrate that in plant tissues the relative magnitude of cell-wall versus cell-to-cell transport could dependent on the physical nature of the driving forces (hydrostatic, osmotic) involved.Abbreviations and symbols D c diffusivity of the cell-to-cell pathway - D t diffusivity of the tissue - radial flow rate per cm2 of segment surface - Lp hydraulic conductivity of plasma-membrane - Lpr radial hydraulic conductance of the cortex - T 1/2 half-time of water exchange between cell and surroundings - volumetric elastic modulus  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号